skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeon, Junehyoung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the impact of massive primordial black holes (PBHs;mBH ∼ 106M) on the star formation and first galaxy assembly process using high-resolution hydrodynamical simulations fromz= 1100 toz ∼ 9. We find that PBH accretion is self-regulated by feedback, suppressing mass growth unless feedback is weak. PBHs accelerate structure formation by seeding dark matter (DM) halos and gravitationally attracting gas, but strong feedback can delay cooling and suppress star formation. In addition, the presence of baryon-DM streaming creates an offset between the PBH location and the peaks induced in gas density, promoting earlier and more efficient star formation compared to standard ΛCDM. Byz ∼ 10, PBH-seeded galaxies form dense star clusters, with PBH-to-stellar mass ratios comparable to observed high-zactive galactic nuclei like UHZ-1. Our results support PBHs as viable supermassive black hole (SMBH) seeds but do not exclude alternative scenarios. We emphasize that PBH-seeding provides a natural explanation for some of the newly discovered overmassive SMBHs at high redshift, in particular those with extreme ratios of BH-to-dynamical (virial) mass that challenge standard formation channels. Future studies with ultra-deep JWST surveys, the Roman Space Telescope, and radio surveys with facilities such as the Square Kilometre Array and Hydrogen Epoch of Reionization Array will be critical in distinguishing PBH-driven SMBH growth from other pathways. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026